Problem 8.14

The force shown pushes a block over a frictional surface.

F = 130. N $\frac{\mu_k = .300}{d = 5.00 \text{ m}}$

a.) How much work does the force do?

$$W_F = |\vec{F}| |\vec{d}| \cos 0^\circ$$

= (130. N)(5.00 m)
= 650. J

b.) What is the increase in *internal energy* due to friction (translation: how much work does friction pull out of the system and dump into the surrounding area in the form of heat)?

Noting that $f_{\nu} = \mu_{\nu} N = \mu_{\nu} mg$, we can write:

$$W_{f} = |\vec{f}| |\vec{d}| \cos 180^{\circ}$$

$$= (\mu_{k} mg)(d)(-1)$$

$$= -[(.300)(40.0 \text{ kg})(9.80 \text{ m/s}^{2})](5.00 \text{ m})$$

$$= -588 \text{ J} \quad (\Rightarrow \text{ energy increase to surrounding area} = 588 \text{ J})$$

m = 40.0 kg

e.) What is the box's change of kinetic energy?

Although Conservation of Energy would work, in general when you see a question that asks for a change of kinetic energy, the first thing that should pop into your head is Work/Energy Theorem:

m = 40.0 kg

$$W_{net} = W_F + W_f = \Delta KE$$

 $\Rightarrow \Delta KE = (650. J) + (-588. J)$
 $= 62.0 J$

f.) What is the box's final speed?

This is a straight *Conservation of Energy* problem with friction and "F" acting as extraneous forces. That calculation is shown on the next page.

3.)

4.)

c.) How much work does the *normal force* do? The normal force does not motivate the body to pick up or lose speed, so it does *no work*. The mathematical justification lies in the fact that the angle between the *normal* and the *displacement* is 90° , so:

$$\mu_k = .300$$
 $\mu_k = .300$

m = 40.0 kg

$$W_{N} = |\vec{N}| |\vec{d}| \cos 90^{\circ}$$
$$= 0$$

This is ALWAYS true. The normal *never* motivates a body's *speed* to change, though it may push a body out of straight-line motion—think banked curve on a freeway—which is a form of acceleration because the velocity *vector* is changing with the change of direction. (This kind of a case will be messed with later.)

d.) How much work does gravity do? In this case, gravity is also at an angle of 90° , relative to the displacement vector, so in this case, gravity also does no work.

2.)

1.)